Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Cell Metab ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38718793

RESUMEN

Obesity alters levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, dysregulation of which leads to nonalcoholic fatty liver disease (NAFLD). However, the impact of obesity on intra-pituitary homeostasis is largely unknown. Here, we uncovered a blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice and humans. Furthermore, we found that obesity inflames the pituitary gland, leading to impaired pituitary inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) UPR branch, which is essential for protecting against pituitary endocrine defects and NAFLD progression. Intriguingly, pituitary IRE1-deletion resulted in hypothyroidism and suppressed the thyroid hormone receptor B (THRB)-mediated activation of Xbp1 in the liver. Conversely, activation of the hepatic THRB-XBP1 axis improved NAFLD in mice with pituitary UPR defect. Our study provides the first evidence and mechanism of obesity-induced intra-pituitary cellular defects and the pathophysiological role of pituitary-liver UPR communication in NAFLD progression.

2.
Hepatology ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683546

RESUMEN

Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatohepatitis (MASH), and hepatocellular carcinoma (HCC). In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mtDNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of ALD and HCC. Mitochondrial dynamics and mtDNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating ALD and alcohol-associated HCC.

3.
Autophagy ; : 1-34, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38442890

RESUMEN

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

5.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464149

RESUMEN

Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is in turn regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression. To explore the effect of alcohol on brain TFEB and autophagy, we exposed young (3-month old) and aged (23-month old) mice to two alcohol-feeding paradigms and assessed biochemical, transcriptome, histology, and behavioral endpoints. In young mice, alcohol decreased hippocampal nuclear TFEB staining but increased SQSTM1/p62, LC3-II, ubiquitinated proteins, and phosphorylated Tau. Hippocampal TFEB activity was lower in aged mice than it was in young mice, and Gao-binge alcohol feeding did not worsen the age-related reduction in TFEB activity. To better assess the impact of chronic alcohol exposure, we fed young and aged mice alcohol for four weeks before completing Morris Water and Barnes Maze spatial memory testing. The aged mice showed worse spatial memory on both tests. While alcohol feeding slightly impaired spatial memory in the young mice, it had little effect or even slightly improved spatial memory in the aged mice. These findings suggest that aging is a far more important driver of spatial memory impairment and reduced autophagy flux than alcohol consumption.

6.
Acta Pharm Sin B ; 14(1): 190-206, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38261809

RESUMEN

Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.

7.
JACC Basic Transl Sci ; 8(10): 1334-1353, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38094682

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.

8.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986778

RESUMEN

Cold exposure is an environmental stress that elicits a rapid metabolic shift in endotherms and is required for survival. The liver provides metabolic flexibility through its ability to rewire lipid metabolism to respond to an increased demand in energy for thermogenesis. We leveraged cold exposure to identify novel lipids contributing to energy homeostasis and found that lysosomal bis(monoacylglycero)phosphate (BMP) lipids were significantly increased in the liver during acute cold exposure. BMP lipid changes occurred independently of lysosomal abundance but were dependent on the lysosomal transcriptional regulator transcription factor EB (TFEB). Knockdown of TFEB in hepatocytes decreased BMP lipid levels. Through molecular biology and biochemical assays, we found that TFEB regulates lipid catabolism during cold exposure and that TFEB knockdown mice were cold intolerant. To identify how TFEB regulates BMP lipid levels, we used a combinatorial approach to identify TFEB target Pla2g15 , a lysosomal phospholipase, as capable of degrading BMP lipids in in vitro liposome assays. Knockdown of Pla2g15 in hepatocytes led to a decrease in BMP lipid species. Together, our studies uncover a required role of TFEB in mediating lipid liver remodeling during cold exposure and identified Pla2g15 as an enzyme that regulates BMP lipid catabolism.

10.
Toxicol Sci ; 197(1): 53-68, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37792503

RESUMEN

Acetaminophen (APAP) overdose stands as the primary cause of acute liver failure in the United States. APAP hepatotoxicity involves hepatic glutathione (GSH) depletion and mitochondrial damage. To counteract the toxicity of APAP, the nuclear factor erythroid 2 like 2 (Nrf2) activates the expression of genes responsible for drug detoxification and GSH synthesis. In this study, we present evidence that the elimination of hepatocyte small heterodimer partner, a critical transcriptional repressor for liver metabolism, results in Nrf2 activation and protects mice from APAP-induced acute liver injury. Initial investigations conducted on wildtype (WT) mice revealed a swift downregulation of Shp mRNA within the first 24 h after APAP administration. Subsequent treatment of hepatocyte-specific Shp knockout (ShpHep-/-) mice with 300 mg/kg APAP for 2 h exhibited comparable bioactivation of APAP with that observed in the WT controls. However, a significant reduction in liver injury was observed in ShpHep-/- after APAP treatment for 6 and 24 h. The decreased liver injury correlated with a faster recovery of GSH, attributable to heightened expression of Nrf2 target genes involved in APAP detoxification and GSH synthesis. Moreover, in vitro studies revealed that SHP protein interacted with NRF2 protein, inhibiting the transcription of Nrf2 target genes. These findings hold relevance for humans, as overexpression of SHP hindered APAP-induced NRF2 activation in primary human hepatocytes. In conclusion, our studies have unveiled a novel regulatory axis involving SHP and NRF2 in APAP-induced acute liver injury, emphasizing SHP as a promising therapeutic target in APAP overdose-induced hepatotoxicity.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Animales , Ratones , Acetaminofén/toxicidad , Acetaminofén/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/metabolismo , Hígado/metabolismo , Glutatión/metabolismo , Ratones Endogámicos C57BL
11.
Cell Rep ; 42(10): 113291, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862166

RESUMEN

Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.


Asunto(s)
Mitocondrias , Orgánulos , Mitocondrias/metabolismo , Orgánulos/metabolismo , Lisosomas/metabolismo , Autofagia/fisiología , Mitofagia/fisiología
15.
Methods Mol Biol ; 2675: 97-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258758

RESUMEN

Mitochondrial biogenesis and turnover rate are critical to maintain homeostasis of the intracellular mitochondrial pool. Altered mitochondrial biogenesis and mitophagy are closely related to many chronic diseases, highlighting the importance of mitochondrial stasis in various pathological conditions including liver diseases. We describe a detailed protocol for monitoring mitochondrial lifecycle in primary cultured mouse hepatocytes and mouse liver using the dual color fluorescence-based imaging of MitoTimer. Three types of mitochondria were visualized in mouse hepatocytes: green-only mitochondria (newly synthesized mitochondria), red-only mitochondria (old/aging mitochondria), as well as the majority of yellow mitochondria (representing an intermediate stage of mitochondria). The ratio of red/green fluorescence in each cell will be used to track mitochondrial aging. Super-resolution microscopy analysis revealed that majority of mitochondria were spatially heterogeneous with proteins from simultaneous new synthesis, maturation, and turnover in hepatocytes. MitoTimer reporter assay can specifically target to mitochondria and be used to monitor mitochondrial biogenesis and maturation as well as turnover in vitro and in vivo.


Asunto(s)
Mitocondrias , Biogénesis de Organelos , Ratones , Animales , Mitocondrias/metabolismo , Mitofagia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo
16.
Biochem Pharmacol ; 213: 115576, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127251

RESUMEN

Alzheimer's disease (AD) is the most common form of progressive dementia and there is no truly efficacious treatment. Accumulating evidence indicates that impaired autophagic function for removal of damaged mitochondria and protein aggregates such as amyloid and tau protein aggregates may contribute to the pathogenesis of AD. Epidemiologic studies have implicated alcohol abuse in promoting AD, yet the underlying mechanisms are poorly understood. In this review, we discuss mechanisms of selective autophagy for mitochondria and protein aggregates and how these mechanisms are impaired by aging and alcohol consumption. We also discuss potential genetic and pharmacological approaches for targeting autophagy/mitophagy, as well as lysosomal and mitochondrial biogenesis, for the potential prevention and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Agregado de Proteínas , Autofagia , Mitofagia/genética , Etanol , Factores de Transcripción , Péptidos beta-Amiloides/metabolismo
17.
Hepatology ; 78(2): 503-517, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999531

RESUMEN

BACKGROUND AND AIMS: The aim of the study was to investigate the role and mechanisms of tuberous sclerosis complex 1 (TSC1) and mechanistic target of rapamycin complex 1 (mTORC1) in alcohol-associated liver disease. APPROACH AND RESULTS: Liver-specific Tsc1 knockout (L- Tsc1 KO) mice and their matched wild-type mice were subjected to Gao-binge alcohol. Human alcoholic hepatitis (AH) samples were also used for immunohistochemistry staining, western blot, and quantitative real-time PCR (q-PCR) analysis. Human AH and Gao-binge alcohol-fed mice had decreased hepatic TSC1 and increased mTORC1 activation. Gao-binge alcohol markedly increased liver/body weight ratio and serum alanine aminotransferase levels in L- Tsc1 KO mice compared with Gao-binge alcohol-fed wild-type mice. Results from immunohistochemistry staining, western blot, and q-PCR analysis revealed that human AH and Gao-binge alcohol-fed L- Tsc1 KO mouse livers had significantly increased hepatic progenitor cells, macrophages, and neutrophils but decreased HNF4α-positive cells. Gao-binge alcohol-fed L- Tsc1 KO mice also developed severe inflammation and liver fibrosis. Deleting Tsc1 in cholangiocytes but not in hepatocytes promoted cholangiocyte proliferation and aggravated alcohol-induced ductular reactions, fibrosis, inflammation, and liver injury. Pharmacological inhibition of mTORC1 partially reversed hepatomegaly, ductular reaction, fibrosis, inflammatory cell infiltration, and liver injury in alcohol-fed L- Tsc1 KO mice. CONCLUSIONS: Our findings indicate that persistent activation of mTORC1 due to the loss of cholangiocyte TSC1 promotes liver cell repopulation, ductular reaction, inflammation, fibrosis, and liver injury in Gao-binge alcohol-fed L- Tsc1 KO mice, which phenocopy the pathogenesis of human AH.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína 1 del Complejo de la Esclerosis Tuberosa , Animales , Humanos , Ratones , Etanol , Fibrosis , Hepatitis Alcohólica/patología , Inflamación/patología , Hígado/patología , Hepatopatías Alcohólicas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
18.
Am J Pathol ; 193(10): 1415-1426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906265

RESUMEN

Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.


Asunto(s)
Hepatopatías Alcohólicas , Neoplasias Hepáticas , Humanos , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Autofagia/fisiología
19.
Cell Mol Gastroenterol Hepatol ; 15(5): 1027-1049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36754207

RESUMEN

BACKGROUND: Alcohol-associated liver disease (ALD) is a worldwide health problem, of which the effective treatment is still lacking. Both detrimental and protective roles of adipose tissue have been implicated in ALD. Although alcohol increases adipose tissue lipolysis to promote alcohol-induced liver injury, alcohol also activates brown adipose tissue (BAT) thermogenesis as an adaptive response in protecting against alcohol-induced liver injury. Moreover, aging and obesity are also risk factors for ALD. In the present study, we investigated the effects of autophagy receptor protein SQSTM1/p62 on adipose tissue and obesity in alcohol-induced liver injury in both young and aged mice. METHODS: Young and aged whole-body SQSTM1/p62 knockout (KO) and their age-matched wild-type (WT) mice were subjected to chronic plus binge (Gao-binge) alcohol feeding. Blood, adipose and liver tissues were collected for biochemical and histologic analysis. RESULTS: Aged but not young SQSTM1/p62 KO mice had significantly increased body weight and fat mass compared with the matched WT mice. Gao-binge alcohol feeding induced white adipose atrophy and decreased levels of SQSTM1/p62 levels in adipose tissue in aged WT mice. SQSTM1/p62 KO aged mice were resistant to Gao-binge alcohol-induced white adipose atrophy. Alcohol feeding increased the expression of thermogenic genes in WT mouse BAT, which was significantly blunted in SQSTM1/p62 KO aged mice. Alcohol-fed aged SQSTM1/p62 KO mice showed significantly higher levels of serum alanine aminotransferase, hepatic triglyceride, and inflammation compared with young and aged WT mice fed with alcohol. Alcohol-fed SQSTM1/p62 KO mice also increased secretion of proinflammatory and angiogenic adipokines that may promote alcohol-induced liver injury. CONCLUSIONS: Loss of SQSTM1/p62 in aged mice leads to obesity and impairs alcohol-induced BAT adaptation, resulting in exacerbated alcohol-induced liver injury in mice.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hepatopatías Alcohólicas , Animales , Ratones , Proteína Sequestosoma-1 , Etanol/toxicidad , Hepatopatías Alcohólicas/patología , Ratones Noqueados , Obesidad/complicaciones , Atrofia
20.
Autophagy ; 19(4): 1049-1054, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36628432

RESUMEN

In this editors' corner, the section editors were asked to indicate where they see the autophagy field heading and to suggest what they consider to be key unanswered questions in their specialty area.


Asunto(s)
Autofagia , Investigación Biomédica , Investigación Biomédica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...